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From cuvette to the microscope

1. Excitation & Emission Spectra

• Local environment polarity, fluorophore concentration

2. Anisotropy & Polarization

• Rotational diffusion

3. Quenching

• Solvent accessibility

• Character of the local environment

4. Fluorescence Lifetime

• Dynamic processes (nanosecond timescale)

5. Resonance Energy Transfer

• Probe-to-probe distance measurements

6. Fluorescence microscopy

• localization

7. Fluorescence Correlation Spectroscopy
• Translational & rotational diffusion 

• Concentration
• Dynamics

In the microscope, the spatial location matters: spatial correlations and distributions are 

a component of the experiment



Why we need FCS to measure the internal 
dynamics in cell??

Methods based on perturbation

Typically FRAP (fluorescence recovery after 

photobleaching) 

Methods based on fluctuations

Typically FCS and dynamic ICS methods

There is a fundamental difference between the 

two approaches, although they are related as to 

the physical phenomena they report on.



Introduction to “number” fluctuations

In any open volume, the number of molecules or particles 

fluctuate according to a Poisson statistics (if the particles are 

not-interacting)

The average number depends on the concentration of the 
particles and the size of the volume

The variance is equal to the number of particles in the 
volume

This principle does not tell us anything about the time of the 

fluctuations



The fluctuation-dissipation principle

If we perturb a system from equilibrium, it returns to the average value 
with a characteristic time that depends on the process responsible for 
returning the system to equilibrium

Spontaneous energy fluctuations in a part of the system, can cause the 
system to locally go out of equilibrium.  These spontaneous fluctuations 
dissipate with the same time constant as if we had externally perturbed 
the equilibrium of the system.
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First Application of Correlation Spectroscopy
(Svedberg & Inouye, 1911) Occupancy Fluctuation

Collected data by counting (by visual inspection) the number of particles

in the observation volume as a function of time using a “ultra microscope”
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Experimental data on colloidal gold particles:
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*Histogram of particle 

counts

*Poisson behavior

*Autocorrelation not 
available in the original 

paper.  It can be easily 
calculated today.

Particle Correlation

Comments to this paper conclude that scattering will not be suitable to observe single 

molecules, but fluorescence could



• Number of fluorescent molecules in the volume of 

observation, diffusion or binding

• Conformational Dynamics

• Rotational Motion if polarizers are used either in 

emission or excitation

• Protein Folding

• Blinking

• And many more

Example of processes that could generate fluctuations 

What can cause a fluctuation in the 
fluorescence signal???

Each of the above processes has its own dynamics.  FCS can recover that 

dynamics



Generating Fluctuations By Motion

Sample Space

Observation 
Volume

1. The Rate of Motion

2. The Concentration 
of Particles

3. Changes in the 
Particle Fluorescence 
while under 
Observation, for 
example conformational 
transitions

What is Observed?We need a small volume!!



Time (in us)

600,000400,000200,0000

C
o
u
n
ts

 (
in

 k
H

z
)

550

500

450

400

350

300

250

200

150

100

50

0

The time series

Time (in us)

1,380,0001,375,0001,370,0001,365,000

C
o

u
n
ts

 (
in

 k
H

z
)

80

70

60

50

40

30

20

10

0

Detail of one time region

Correlation plot (log averaged)

Tau (s)

1E-5 0.0001 0.001 0.01 0.1 1 10
G

(t
)

6

5

4

3

2

1

0

The autocorrelation function

N and relaxation time of the fluctuation

PCH average

counts

1614121086420

0.1

1

10

100

1,000

10,000

100,000

1,000,000

The histogram of the 

counts in a given time bin 

(PCH).  N and brightness

Data presentation and Analysis

Duration



How to extract the information about the 
fluctuations and their characteristic time?

Distribution of the amplitude of the fluctuations

Distribution of the duration of the fluctuations

To extract the distribution of the duration of the fluctuations we 

use a math based on calculation of the correlation function

To extract the distribution of the amplitude of the fluctuations, 

we use a math based on the PCH distribution



The definition of the Autocorrelation Function
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),()()( tCWdQtF rrr∫= κ

kQ = quantum yield and 

detector sensitivity (how bright 

is our probe).  This term could 

contain the fluctuation of the 

fluorescence intensity due to 

internal processes

W(r) describes the 

profile of illumination

C(r,t) is a function of the  

fluorophore 

concentration over time.  

This is the term that 

contains the “physics” of 

the diffusion processes

What determines the intensity of the 
fluorescence signal??

The value of F(t) depends on the profile of illumination!

This is the fundamental equation in FCS



What about the excitation (or observation) volume shape?
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More on the PSF in Jay’s lecture

For the 2-photon case, these expression must be squared



The Autocorrelation Function
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In the simplest case, two parameters define the autocorrelation function: 
the amplitude of the fluctuation (G(0)) and the characteristic relaxation 
time of the fluctuation



The Effects of Particle Concentration on the
Autocorrelation Curve
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Why Is G(0) Proportional to 1/Particle Number?
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A Poisson distribution describes the statistics of particle occupancy 
fluctuations. For a Poisson distribution the variance is proportional to the 
average:
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G(0), Particle Brightness and Poisson Statistics
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Effect of Shape on
the (Two-Photon) Autocorrelation Functions:

For a 2-dimensional Gaussian excitation volume:
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Blinking or other exponential processes:

Triplet state term:
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T is the triplet state amplitude

τT is the triplet lifetime.

If the particle blinks during the times it goes through the illumination volume, an 

additional term appears in the fluctuation amplitude.  

How to account for this process??

Reasoning:  let us assume that the particle is not moving and it is at the center 

of the PSF.  

The intensity will turn ON and OFF.  

The OFF time depends on the characteristic blinking time (triplet state lifetime).  

The ON time depends on the laser intensity. The larger the laser intensity, the 

lesser is the ON time.   



Blinking and binding processes

Until now, we assumed that the particle is not moving.  If we assume that the 

blinking of the particle is independent on its movement, we can use a 

general principle that states that the correlation function splits in the product of 

the two independent processes.  
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K = kf / kb is the equilibrium coefficient; λλλλ = kf + kb is the apparent reaction 
rate coefficient; and fj is the fractional intensity contribution of species j



How different is G(binding) from G(diffusion)?

With good S/N it is possible to distinguish between the two processes. 

Most of the time diffusion and exponential processes are combined

Data
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Orders of magnitude (for 1 µM solution, small molecule, water)

Volume Device Size(µm)      Molecules Time
milliliter cuvette 10000 6x1014 104

microliter plate well 1000 6x1011 102

nanoliter microfabrication 100 6x108 1

picoliter typical cell 10 6x105 10-2

femtoliter confocal volume 1 6x102 10-4

attoliter nanofabrication        0.1 6x10-1 10-6

Table of characteristic times for diffusion



The Effects of Particle Size on the
Autocorrelation Curve
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Autocorrelation Adenylate Kinase -EGFP
Chimeric Protein in HeLa Cells

Qiao Qiao Ruan, Y. Chen, M. Glaser & W. Mantulin Dept. Biochem & Dept Physics- LFD Univ Il, USA

Examples of different Hela cells transfected with AK1-EGFP

Examples of different Hela cells transfected with AK1β -EGFP
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EGFPcell

EGFP-AKββββ in the cytosol

EGFP-AK in the cytosol

Normalized autocorrelation curve of EGFP in solution (•), EGFP in the cell (• ), 

AK1-EGFP in the cell(•), AK1ββββ-EGFP in the cytoplasm of the cell(•). 

Autocorrelation of EGFP & Adenylate Kinase -EGFP



Autocorrelation of Adenylate Kinase –EGFP
on the Membrane

A mixture of AK1b-EGFP in the cytoplasm and membrane of the cell.

Clearly more than one diffusion time



Diffusion constants (um2/s) of AK EGFP-AKββββ in the cytosol -EGFP in the cell 
(HeLa). At the membrane, a dual diffusion rate is calculated from FCS 
data.  Away from the plasma membrane, single diffusion constants are 

found.
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Two Channel Detection:

Cross-correlation

Each detector observes
the same particles

Sample Excitation 
Volume

Detector 1 Detector 2

Beam Splitter
1. Increases signal to 

noise by isolating 
correlated signals.

2. Corrects for PMT noise



Removal of Detector Noise by Cross-correlation

11.5 nM Fluorescein

Detector 1

Detector 2

Cross-correlation

Detector after-pulsing
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Thus, for a 3-dimensional Gaussian excitation volume one 
uses:
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Cross-correlation calculations

One uses the same fitting functions you 
would use for the standard autocorrelation 
curves.

G12 is commonly used to denote the cross-correlation and 
G1 and G2 for the autocorrelation of the individual detectors. 
Sometimes you will see Gx(0) or C(0) used for the cross-
correlation.



Two-Color Cross-correlation

Each detector observes

particles with a particular color

The cross-correlation 
ONLY if particles are observed in both channels

The cross-correlation signal:

Sample

Red filter Green filter

Only the green-red molecules are observed!!



Two-color Cross-correlation
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Equations are similar to those for the cross 

correlation using a simple beam splitter:

Information Content Signal

Correlated signal from 
particles having both
colors.

Autocorrelation from channel 
1 on the green particles.

Autocorrelation from channel 2 
on the red particles.
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Experimental Concerns: Excitation Focusing &  
Emission Collection

Excitation side:
(1) Laser alignment 
(2) Chromatic aberration 
(3) Spherical aberration

Emission side:
(1) Chromatic aberrations
(2) Spherical aberrations
(3) Improper alignment of detectors or pinhole 

(cropping of the beam and focal point position)

We assume exact match of the observation volumes in our 
calculations which is difficult to obtain experimentally.



Uncorrelated

Correlated

Two-Color Fluctuation Correlation Spectroscopy

1
)()(

)()(
)( −

>><<

>+<
=

tFtF

tFtF
G

ji

ji

ij

τ
τ

Interconverting

2211111 )( NfNftF +=2221122 )( NfNftF +=

Ch.2 Ch.1

450 500 550 600 650 700
0

20

40

60

80

100

Wavelength (nm)

%
T

For two uncorrelated species, the amplitude of the 

cross-correlation is proportional to:













+++

+
∝

2

222212112212211

2

11211

2222111211

12

)(
)0(

NffNNffffNff

NffNff
G



Applications:  Cross-correlation

Ramesh C Patel, Ujendra Kumar, Don C Lamb, John S Eid, Magalie 
Rocheville, Michael Grant, Aruna Rani, Theodore L Hazlett, Shutish C Patel, 
Enrico Gratton, and Yogesh C Patel.

Ligand binding to somatostatin receptors induces receptor-specific oligomer 
formation in live cells. 

Proc Natl Acad Sci USA. 2002; 99(5): 3294-9. PMCID: PMC122512



Does SSTR1 exist as a monomer after ligand binding while

SSTR5 exists as a dimer/oligomer?

Somatostatin

Fluorescein Isothiocyanate (FITC)

Somatostatin

Texas Red (TR)

Cell Membrane

R1

R5 R5

R1

Three Different CHO-K1 cell lines: wt R1, HA-R5, and wt R1/HA-R5

Hypothesis: R1- monomer ; R5 - dimer/oligomer; R1R5 dimer/oligomer

Collaboration with Ramesh Patel*† and Ujendra Kumar*
*Fraser Laboratories, Departments of Medicine, Pharmacology, and Therapeutics and Neurology and Neurosurgery, McGill University, and Royal Victoria

Hospital, Montreal, QC, Canada H3A 1A1; †Department of Chemistry and Physics, Clarkson University, Potsdam, NY 13699



Green Ch. Red Ch.

SSTR1 CHO-K1 cells with SST-fitc + SST-tr

• Very little labeled SST inside cell nucleus

• Non-homogeneous distribution of SST

• Impossible to distinguish co-localization from molecular interaction
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Experimentally derived auto- and cross-correlation curves from live R1 and 

R5/R1 expressing CHO-K1 cells using dual-color two-photon FCS.  

The R5/R1 expressing cells have a greater cross-correlation relative to the 
simulated boundaries than the R1 expressing cells, indicating a higher level 
of dimer/oligomer formation.

R1 R1/R5

Patel, R.C., et al., Ligand binding to somatostatin receptors induces receptor-

specific oligomer formation in live cells. PNAS, 2002. 99(5): p. 3294-3299



Discussion

1.The PSF: how much it affects our estimation of 

the processes?

2.Models for diffusion, anomalous?

3.Binding?

4.FRET (dynamic FRET)?

5.Bleaching?

6.……and many more questions





100 red and 100 blue particles in the box.  The detector is sensitive only to the blue 

particles.  The particles perform a random motion in 3D.  At random times after 

excitation, the blue particle (in the singlet state) can convert into the red particle (in 

the triplet state).  After about 10-5s, the triplet state decays and the particle returns 

to be blue (singlet state).  The particle is only detected when inside the illumination 

volume (in pink).  The intensity is properly weighted according to a 3-D Gaussian 

intensity model

Box size=6.4 µm

Diffusion coefficient D=23 µm2/s

Periodic boundary conditions

τD =w2/8D=2.6 ms



Correlation function for pure diffusion Correlation function for diffusion and 

excited-state reaction (triplet state)

Panel 1: 100 particles in a box of approximately 6.4 µm side and a PSF of  0.5 

µm waist and 1.5 µm axial waist.  

Panel 2: 200 particles in a box.  All particles undergo an excited state reaction 

with a decay rate of 10-5s.  The system is at equilibrium with half the particles in 

the triplet excited state.  What is the apparent G(0) in panel 2?  Why are the two 

correlation functions different?



Photon counting histogram for the sample with 100 particles in a box 

(panel 1) and with 200 particles (panel 2) undergoing an excited state 

reaction at a rate of 10-5s.  The system is at equilibrium and half of the 

particles are in the triplet excited state.  Why are the two histograms identical 

(within noise)?





Multiple Species

Case 1:  Species vary by a difference in diffusion constant, D.

Autocorrelation function can be used:

(2D-Gaussian Shape)G(ττττ)sample ==== fi
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Antibody - Hapten Interactions

Mouse IgG: The two heavy chains are 

shown in yellow and light blue. The two 

light chains are shown in green and dark 

blue..J.Harris, S.B.Larson, K.W.Hasel, 

A.McPherson, "Refined structure of an 

intact IgG2a monoclonal antibody", 

Biochemistry 36: 1581, (1997).

Digoxin: a cardiac glycoside  used to 

treat congestive heart failure. Digoxin 

competes with potassium for a binding 

site on an enzyme, referred to as 

potassium-ATPase. Digoxin inhibits the 

Na-K ATPase pump in the myocardial 

cell membrane. 

Binding  site
Binding  site

carb2
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Two Binding Site Model
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Digoxin-FL Binding to  IgG: G(0) Profile

Y. Chen , Ph.D. Dissertation; Chen et. al.,  Biophys. J (2000) 79: 1074



Case 2: Species vary by a difference in brightness

The autocorrelation function is not suitable 
for analysis of this kind of data without additional information.

We need a different type of analysis

21 DD ≈assuming that

The quantity G(0) becomes the only parameter to distinguish species, 
but we know that:

G(0)sample ==== fi

2
⋅⋅⋅⋅G(0)i∑∑∑∑



The Photon Counting Histogram: 

Statistical Analysis of Single 

Molecule Populations



Transition from FCS

• The Autocorrelation function only depends 
on fluctuation duration and fluctuation 
density (independent of excitation power)

• PCH: distribution of intensities 
(independent of time)



Fluorescence Trajectories

Intensity = 115,000 cps

Intensity = 111,000 cps

Fluorescent 

Monomer:

Aggregate:
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Photon Count Histogram (PCH)

Can we quantitate this? 

What contributes to the distribution of intensities?
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Fixed Particle Noise (Shot 

Noise)
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The Point Spread Function 

(PSF)
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Single Particle PCH

+ +

Have to sum up the poissonian distributions for all possible positions 

of the particle within the PSF
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• What if I have two particles in the PSF?

• Have to calculate every possible 
position of the second particle for each 
possible position of the first!
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Convolution
• Sum up all combinations of two probability distributions 

(joint probability distribution)

• Distributions (particles) must be independent
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More Particles
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How Many Particles Do We Have 

in the PSF?
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Multiple Species

• Species are independent so just 
convolute!
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Conv. with

1 particle PCH …3 Particle

PCH

Species 1

PCH

Average weighted by number 

probability

Species 2

PCH …

Final
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convolution

total broadening

initial 
distribution

Recap: Factors that contribute to the final broadening of 
the PCH
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Method

• Sum up Poisson distributions from all 
possible arrangements and number of 
fluorophores in excitation volume (PSF)
– Intensity weighted sum of all possible single 

particle histograms (Poisson functions)

– Convolution to get multiple particle histograms

– Number probability weighted sum of multiple 
particle histograms

– Convolution to get multi-species histograms

Chen et al., Biophys. J., 1999, 77, 553.
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d is number of fitting parameters

Chen et al., Biophys. J., 1999, 77, 553.



Model Test
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Hypothetical situation: Protein 

Interactions

• 2 proteins are labeled with a fluorophore

• Proteins are soluble

• How do we assess interactions between 
these proteins?



Dimer has double the 

brightness

+

ε = εmonomer ε = 2 x εmonomer

All three species are present in 

equilibrium mixture

Typical one photon εmonomer = 10,000 cpsm



Photon Count Histogram (PCH)
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What we measure is the number of 

particles in the PSF.  How Do We 

Get Concentrations?

• N is defined relative to PSF volume

• One photon:

• Two photon:

• Definition is same as for FCS

• Can use FCS to determine w0 (and maybe 

z0)
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rr
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w
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w0 = 0.21 um, z0 = 1.1 um, VPSF = 0.091 um3, C = 23 nM



How to Improve Accuracy

• Minimize sources of instrument noise

– PSF heterogeneity

– Shot noise

• Maximize particle burst amplitudes
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Saturation Effect
Rhodamine 110 on the Zeiss Confocor 3

10 uW laser

Laser power is not an infinite source of brightness!
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Sampling Time Effect

Wu and Mueller, Biophys. J., 2005, 89, 2721.
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Again, shorter sampling leads to photon limited acquisition

In general sample as long as possible without diffusion averaging



PSF X,Y, and Z Dimensions Don’t 

Matter
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Functional Form Matters for PCH

PSF z-Profile
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Point Spread Function Effects
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for ANY PSF shape.



Alternative Methods

• Fluorescence Cumulant Analysis (FCA)
– Mueller Biophys. J. 2004, 86, 3981.
– Similar to method of moments

– Any distribution can be described by a sum of 
moments

– Simple algebraic formulas for cumulants

• Fluorescence Intensity Distribution Analysis 
(FIDA)
– Kask et al. PNAS 1999, 96, 13756.

– Fits PSF in fourier transformed space
– Fits to non-physical parameterized PSF



2D PCH
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Calculating the 2D PCH 

Function
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the binomial distribution:

We can find the 2D PCH function from the single channel PCH function!

Chen et al., Biophys. J., 2005, 88, 2177-2192.



Summary

• The photon count histogram can be 
modeled by integration of component 
noise sources

• Heterogeneous samples can be resolved 
through global analysis

• Accuracy is related to magnitude of 
particle fluctuations relative to instrument 
fluctuations


