Introduction to FCS PCH analysis Cross-correlation

Enrico Gratton

Laboratory for Fluorescence Dynamics University of California, Irvine

From cuvette to the microscope

1. Excitation \& Emission Spectra

- Local environment polarity, fluorophore concentration

2. Anisotropy \& Polarization

- Rotational diffusion

3. Quenching

- Solvent accessibility
- Character of the local environment

4. Fluorescence Lifetime

- Dynamic processes (nanosecond timescale)

5. Resonance Energy Transfer

- Probe-to-probe distance measurements

6. Fluorescence microscopy

- localization

7. Fluorescence Correlation Spectroscopy

- Translational \& rotational diffusion
- Concentration
- Dynamics

In the microscope, the spatial location matters: spatial correlations and distributions are a component of the experiment

Why we need FCS to measure the internal dynamics in cell??

Methods based on perturbation Typically FRAP (fluorescence recovery after photobleaching)

Methods based on fluctuations Typically FCS and dynamic ICS methods

There is a fundamental difference between the two approaches, although they are related as to the physical phenomena they report on.

Introduction to "number" fluctuations

In any open volume, the number of molecules or particles fluctuate according to a Poisson statistics (if the particles are not-interacting)

The average number depends on the concentration of the particles and the size of the volume

The variance is equal to the number of particles in the volume

This principle does not tell us anything about the time of the fluctuations

The fluctuation-dissipation principle

If we perturb a system from equilibrium, it returns to the average value with a characteristic time that depends on the process responsible for returning the system to equilibrium

Spontaneous energy fluctuations in a part of the system, can cause the system to locally go out of equilibrium. These spontaneous fluctuations dissipate with the same time constant as if we had externally perturbed the equilibrium of the system.

First Application of Correlation Spectroscopy

(Svedberg \& Inouye, 1911) Occupancy Fluctuation

Experimental data on colloidal gold particles:

$$
\begin{aligned}
& 120002001324123102111131125111023313332211122422122612214 \\
& 2345241141311423100100421123123201111000111 _2110013200000 \\
& 10011000100023221002110000201001 _333122000231221024011102 \\
& 1222112231000110331110210110010103011312121010121111211 _10 \\
& 003221012302012121321110110023312242110001203010100221734 \\
& 410101002112211444421211440132123314313011222123310121111 \\
& 222412231113322132110000410432012120011322231200 _253212033 \\
& 233111100210022013011321113120010131432211221122323442230 \\
& 321421532200202142123232043112312003314223452134110412322 \\
& 220221
\end{aligned}
$$

Collected data by counting (by visual inspection) the number of particles in the observation volume as a function of time using a "ultra microscope"

Particle Correlation

Comments to this paper conclude that scattering will not be suitable to observe single molecules, but fluorescence could

What can cause a fluctuation in the fluorescence signal???

- Number of fluorescent molecules in the volume of observation, diffusion or binding
- Conformational Dynamics
- Rotational Motion if polarizers are used either in emission or excitation
- Protein Folding
- Blinking
- And many more

Example of processes that could generate fluctuations

Each of the above processes has its own dynamics. FCS can recover that dynamics

Generating Fluctuations By Motion

What is Observed?

1. The Rate of Motion
2. The Concentration of Particles
3. Changes in the Particle Fluorescence while under Observation, for example conformational transitions

Data presentation and Analysis

The time series

The histogram of the counts in a given time bin (PCH). N and brightness

How to extract the information about the fluctuations and their characteristic time?

Distribution of the amplitude of the fluctuations

Distribution of the duration of the fluctuations

To extract the distribution of the duration of the fluctuations we use a math based on calculation of the correlation function

To extract the distribution of the amplitude of the fluctuations, we use a math based on the PCH distribution

The definition of the Autocorrelation Function

$$
\delta F(t)=F(t)-\langle F(t)\rangle
$$

$$
G(\tau)=\frac{\langle\delta F(t) \delta F(t+\tau)\rangle}{\langle F(t)\rangle^{2}}
$$

What determines the intensity of the fluorescence signal??

This is the fundamental equation in FCS

The value of $\mathrm{F}(\mathrm{t})$ depends on the profile of illumination!

What about the excitation (or observation) volume shape?

$$
\begin{gathered}
F(x, y, z)=I_{0} I(z) e^{-\frac{2\left(x^{2}+y^{2}\right)}{w_{0}^{2}}} \\
I(z)=\operatorname{Exp}\left[-\frac{2 z^{2}}{w_{0 z}^{2}}\right] \quad \text { Gaussian } z \\
I(z)=\frac{1}{1+\left(\frac{z}{w_{o z}}\right)^{2}} \quad \text { Lorentzian } z
\end{gathered}
$$

More on the PSF in Jay's lecture

For the 2-photon case, these expression must be squared

The Autocorrelation Function

In the simplest case, two parameters define the autocorrelation function: the amplitude of the fluctuation $(\mathrm{G}(0))$ and the characteristic relaxation time of the fluctuation

The Effects of Particle Concentration on the Autocorrelation Curve

Why Is $G(0)$ Proportional to 1/Particle Number?

A Poisson distribution describes the statistics of particle occupancy fluctuations. For a Poisson distribution the variance is proportional to the average:

$$
<N\rangle=\langle\text { Particle_Number }\rangle=\text { Variance }
$$

G(0), Particle Brightness and Poisson Statistics

1000000002011100000010000000101000100100 Time

$$
\begin{gathered}
\text { Average }=0.275 \quad \text { Variance }=0.256 \\
\langle N\rangle \propto \text { Average }^{2} / \text { Variance }=\frac{0.275^{2}}{0.256}=0.296
\end{gathered}
$$

Lets increase the particle brightness by $4 x$:
4000000008044400000040000000404000400400
Average $=1.1$ Variance $=4.09$
$\langle N\rangle \propto 0.296$

Effect of Shape on the (Two-Photon) Autocorrelation Functions:

For a 2-dimensional Gaussian excitation volume:

$$
G(\tau)=\frac{\gamma}{N}\left(1+\frac{(4 D \tau}{w_{2 D G}^{2}}\right)^{\text {2-photon equation contains a 8, instead of } 4}
$$

For a 3-dimensional Gaussian excitation volume:

$$
G(\tau)=\frac{\gamma}{N}\left(1+\frac{(D) \tau}{w_{3 D G}^{2}}\right)^{-1}\left(1+\frac{4 D \tau}{z_{3 D G}^{2}}\right)^{-1 / 2}
$$

3D Gaussian "time" analysis: with $\tau_{D}=w^{2} / 4 \mathrm{D}$ and $\mathrm{S}=w / z$

$$
G(\tau)=\frac{\gamma}{N}\left(1+\frac{\tau}{\tau_{D}}\right)^{-1} \cdot\left(1+S^{2} \cdot \frac{\tau}{\tau_{D}}\right)^{-\frac{1}{2}}
$$

Blinking or other exponential processes:

If the particle blinks during the times it goes through the illumination volume, an additional term appears in the fluctuation amplitude.

How to account for this process??

Reasoning: let us assume that the particle is not moving and it is at the center of the PSF.
The intensity will turn ON and OFF.
The OFF time depends on the characteristic blinking time (triplet state lifetime). The ON time depends on the laser intensity. The larger the laser intensity, the lesser is the ON time.

Triplet state term:
T is the triplet state amplitude τ_{T} is the triplet lifetime.

Blinking and binding processes

Until now, we assumed that the particle is not moving. If we assume that the blinking of the particle is independent on its movement, we can use a general principle that states that the correlation function splits in the product of the two independent processes.

$$
\begin{gathered}
G_{\text {Total }}(\tau)=G_{\text {Blinking }}(\tau) \cdot G_{\text {Diffusion }}(\tau) \\
G_{\text {Binding }}(\tau)=\left[1+K\left(f_{A}-\frac{f_{B}}{K}\right)^{2} e^{-\lambda \tau}\right]
\end{gathered}
$$

$K=k_{f} / k_{b}$ is the equilibrium coefficient; $\lambda=k_{f}+k_{b}$ is the apparent reaction rate coefficient; and $f j$ is the fractional intensity contribution of species j

How different is G (binding) from G (diffusion)?

With good S / N it is possible to distinguish between the two processes. Most of the time diffusion and exponential processes are combined

Table of characteristic times for diffusion

Orders of magnitude (for $1 \mu \mathrm{M}$ solution, small molecule, water)

Volume	Device	Size $(\mu \mathrm{m})$	Molecules	Time
milliliter	cuvette	10000	6×10^{14}	10^{4}
microliter	plate well	1000	6×10^{11}	10^{2}
nanoliter	microfabrication	100	6×10^{8}	1
picoliter	typical cell	10	6×10^{5}	10^{-2}
femtoliter	confocal volume	1	6×10^{2}	10^{-4}
attoliter	nanofabrication	0.1	6×10^{-1}	10^{-6}

The Effects of Particle Size on the Autocorrelation Curve

Diffusion Constants

$300 \mathrm{um}^{2} / \mathrm{s}$	
90	$\mathrm{um}^{2} / \mathrm{s}$
71	$\mathrm{um}^{2} / \mathrm{s}$

Stokes-Einstein Equation:

$$
\begin{aligned}
& \boldsymbol{D}=\frac{\boldsymbol{k} \cdot \boldsymbol{T}}{\mathbf{6} \cdot \boldsymbol{\pi} \cdot \eta \cdot \boldsymbol{r}} \\
& \text { and }
\end{aligned}
$$

$$
M W \propto \text { Volume } \propto r^{3}
$$

Monomer --> Dimer
Only a change in D by a factor of $\mathbf{2}^{1 / 3}$, or 1.26

Autocorrelation Adenylate Kinase -EGFP Chimeric Protein in HeLa Cells

Examples of different Hela cells transfected with AK1-EGFP

Examples of different Hela cells transfected with AK1 β-EGFP
Qiao Qiao Ruan, Y. Chen, M. Glaser \& W. Mantulin Dept. Biochem \& Dept Physics- LFD Univ II, USA

Autocorrelation of EGFP \& Adenylate Kinase -EGFP

Normalized autocorrelation curve of EGFP in solution (), EGFP in the cell (•), AK1-EGFP in the cell(\cdot), AK1 β-EGFP in the cytoplasm of the cell((\cdot).

Autocorrelation of Adenylate Kinase -EGFP on the Membrane

A mixture of AK1b-EGFP in the cytoplasm and membrane of the cell.

Autocorrelation Adenylate Kinase β-EGFP

Diffusion constants (um²/s) of AK EGFP-AK β in the cytosol -EGFP in the cell (HeLa). At the membrane, a dual diffusion rate is calculated from FCS data. Away from the plasma membrane, single diffusion constants are found.

Two Channel Detection: Cross-correlation

Removal of Detector Noise by Cross-correlation

11.5 nM Fluorescein

Detector after-pulsing

Calculating the Cross-correlation Function

Cross-correlation calculations

One uses the same fitting functions you would use for the standard autocorrelation curves.

Thus, for a 3-dimensional Gaussian excitation volume one uses:

$$
G_{12}(\tau)=\frac{\gamma}{N_{12}}\left(1+\frac{4 D_{12} \tau}{w^{2}}\right)^{-1}\left(1+\frac{4 D_{12} \tau}{z^{2}}\right)^{-1 / 2}
$$

G_{12} is commonly used to denote the cross-correlation and G_{1} and G_{2} for the autocorrelation of the individual detectors.
Sometimes you will see $G_{x}(0)$ or $C(0)$ used for the crosscorrelation.

Two-Color Cross-correlation

The cross-correlation ONLY if particles are observed in both channels

Each detector observes particles with a particular color

The cross-correlation signal:

Only the green-red molecules are observed!!

Two-color Cross-correlation

Equations are similar to those for the cross correlation using a simple beam splitter:

$$
\mathbf{G}_{\mathrm{ij}}(\tau)=\frac{\left\langle\mathbf{d F}_{\mathrm{i}}(\mathbf{t}) \cdot \mathbf{d} \mathbf{F}_{\mathbf{j}}(\mathbf{t}+\tau)\right\rangle}{\left\langle\mathbf{F}_{\mathrm{i}}(\mathbf{t})\right\rangle \cdot\left\langle\mathbf{F}_{\mathrm{j}}(\mathbf{t})\right\rangle}
$$

Information Content

Correlated signal from particles having both colors.

Autocorrelation from channel 1 on the green particles.

Autocorrelation from channel 2 on the red particles.

Signal
$G_{12}(\tau)$
$G_{1}(\tau)$
$G_{2}(\tau)$

Experimental Concerns: Excitation Focusing \& Emission Collection

We assume exact match of the observation volumes in our calculations which is difficult to obtain experimentally.

Excitation side:
(1) Laser alignment
(2) Chromatic aberration
(3) Spherical aberration

Emission side:
(1) Chromatic aberrations
(2) Spherical aberrations
(3) Improper alignment of detectors or pinhole (cropping of the beam and focal point position)

Two-Color Fluctuation Correlation Spectroscopy

Uncorrelated

$$
G_{i j}(\tau)=\frac{\left\langle F_{i}(t) F_{j}(t+\tau)\right\rangle}{\left\langle F_{i}(t)\right\rangle\left\langle F_{j}(t)\right\rangle}-1
$$

Correlated

Interconverting

For two uncorrelated species, the amplitude of the cross-correlation is proportional to:

$$
G_{12}(0) \propto\left[\frac{f_{11} f_{12}\left\langle N_{1}\right\rangle+f_{21} f_{22}\left\langle N_{2}\right\rangle}{f_{11} f_{12}\left\langle N_{1}\right\rangle^{2}+\left(f_{11} f_{22}+f_{21} f_{12}\right)\left\langle N_{1}\right\rangle\left\langle N_{2}\right\rangle+f_{21} f_{22}\left\langle N_{2}\right\rangle^{2}}\right]
$$

Applications: Cross-correlation

Ramesh C Patel, Ujendra Kumar, Don C Lamb, John S Eid, Magalie Rocheville, Michael Grant, Aruna Rani, Theodore L Hazlett, Shutish C Patel, Enrico Gratton, and Yogesh C Patel.

Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells.

Proc Natl Acad Sci USA. 2002; 99(5): 3294-9. PMCID: PMC122512

Does SSTR1 exist as a monomer after ligand binding while SSTR5 exists as a dimer/oligomer?

Collaboration with Ramesh Patel*† and Ujendra Kumar*
*Fraser Laboratories, Departments of Medicine, Pharmacology, and Therapeutics and Neurology and Neurosurgery, McGill University, and Royal Victoria Hospital, Montreal, QC, Canada H3A 1A1; †Department of Chemistry and Physics, Clarkson University, Potsdam, NY 13699

Somatostatin

Fluorescein Isothiocyanate (FITC)

Somatostatin

Cell Membrane

Three Different CHO-K1 cell lines: wt R1, HA-R5, and wt R1/HA-R5 Hypothesis: R1- monomer ; R5-dimer/oligomer; R1R5 dimer/oligomer

SSTR1 CHO-K1 cells with SST-fitc + SST-tr
 Green Ch.

- Very little labeled SST inside cell nucleus
- Non-homogeneous distribution of SST
- Impossible to distinguish co-localization from molecular interaction
A Monomer

B
Dimer

Experimentally derived auto- and cross-correlation curves from live R1 and R5/R1 expressing CHO-K1 cells using dual-color two-photon FCS.

The R5/R1 expressing cells have a greater cross-correlation relative to the simulated boundaries than the R1 expressing cells, indicating a higher level of dimer/oligomer formation.

Discussion

1. The PSF: how much it affects our estimation of the processes?
2. Models for diffusion, anomalous?
3. Binding?
4. FRET (dynamic FRET)?
5. Bleaching?
6........and many more questions

Figure 4.2 Simulation of autocorrelation functions using equation (4.12). The diffusion coefficient used is $300 \mu \mathrm{~m}^{2} / \mathrm{sec}, w_{3 D G}=0.3 \mu \mathrm{~m}, z_{3 D G}=1.5 \mu \mathrm{~m}$.

Box size= $=6.4 \mu \mathrm{~m}$
Diffusion coefficient $D=23 \mu \mathrm{~m}^{2} / \mathrm{s}$
Periodic boundary conditions

$$
T_{D}=W^{2} / 8 D=2.6 \mathrm{~ms}
$$

100 red and 100 blue particles in the box. The detector is sensitive only to the blue particles. The particles perform a random motion in 3D. At random times after excitation, the blue particle (in the singlet state) can convert into the red particle (in the triplet state). After about $10^{-5} \mathrm{~s}$, the triplet state decays and the particle returns to be blue (singlet state). The particle is only detected when inside the illumination volume (in pink). The intensity is properly weighted according to a 3-D Gaussian intensity model

Correlation function for pure diffusion

Correlation function for diffusion and excited-state reaction (triplet state)

Panel 1: 100 particles in a box of approximately $6.4 \mu \mathrm{~m}$ side and a PSF of 0.5 $\mu \mathrm{m}$ waist and $1.5 \mu \mathrm{~m}$ axial waist.

Panel 2: 200 particles in a box. All particles undergo an excited state reaction with a decay rate of $10^{-5} \mathrm{~s}$. The system is at equilibrium with half the particles in the triplet excited state. What is the apparent $G(0)$ in panel 2? Why are the two correlation functions different?

Photon counting histogram for the sample with 100 particles in a box (panel 1) and with 200 particles (panel 2) undergoing an excited state reaction at a rate of $10^{-5} \mathrm{~s}$. The system is at equilibrium and half of the particles are in the triplet excited state. Why are the two histograms identical (within noise)?

Multiple Species

Case 1: Species vary by a difference in diffusion constant, D.

Autocorrelation function can be used:

$$
\begin{aligned}
& \left.G(\mathbf{0})_{\text {sample }}=\sum \boldsymbol{f}_{i}^{2} \cdot \boldsymbol{G (0)}\right)_{i}
\end{aligned}
$$

$G(0)_{\text {sample }}$ is no longer g / N !

Antibody - Hapten Interactions

Digoxin: a cardiac glycoside used to treat congestive heart failure. Digoxin competes with potassium for a binding site on an enzyme, referred to as potassium-ATPase. Digoxin inhibits the Na -K ATPase pump in the myocardial cell membrane.

Anti-Digoxin Antibody (lgG) Binding to Digoxin-Fluorescein

Autocorrelation curves:

Binding titration from the autocorrelation analyses:

$$
F_{b}=\frac{\boldsymbol{m} \cdot \boldsymbol{S}_{\text {free }}}{\boldsymbol{K}_{d}+\boldsymbol{S}_{\text {free }}}+c
$$

triplet state

Two Binding Site Model

$\operatorname{lgG}+2$ Ligand-FI $\longleftrightarrow \operatorname{lgG} \cdot$ Ligand-Fl+ Ligand-FI $\longleftrightarrow \operatorname{lgG} \cdot 2$ Ligand-FI

[Ligand] $=1, G(0)=1 / \mathrm{N}, \mathrm{K}_{\mathrm{d}}=1.0$

Digoxin-FL Binding to IgG: G(0) Profile

Y. Chen , Ph.D. Dissertation; Chen et. al., Biophys. J (2000) 79: 1074

Case 2: Species vary by a difference in brightness assuming that $D_{1} \approx D_{2}$

The quantity $\mathrm{G}(0)$ becomes the only parameter to distinguish species, but we know that:

$$
G(\mathbf{0})_{\text {sample }}=\sum f_{i}^{2} \cdot G(\mathbf{0})_{i}
$$

The autocorrelation function is not suitable for analysis of this kind of data without additional information.

We need a different type of analysis

The Photon Counting Histogram: Statistical Analysis of Single Molecule Populations

Transition from FCS

- The Autocorrelation function only depends on fluctuation duration and fluctuation density (independent of excitation power)
- PCH: distribution of intensities (independent of time)

Fluorescence Trajectories

Fluorescent
Monomer:
Intensity $=115,000 \mathrm{cps}$

Aggregate:
Intensity $=111,000 \mathrm{cps}$

Photon Count Histogram (PCH)

Can we quantitate this?
What contributes to the distribution of intensities?

Contribution from the detector noise Fixed Particle Noise (Shot Noise)

Noise is Poisson $\quad \operatorname{Poi}(k,\langle k\rangle)=\frac{\langle k\rangle^{k}}{k!} \exp (-\langle k\rangle)$

Contribution from the profile of illumination The Point Spread Function (PSF)
 One Photon Confocal:

$$
I_{3 D G}(r, z)=\exp \left(-\frac{2 r^{2}}{\omega_{0}^{2}}-\frac{2 z^{2}}{z_{0}^{2}}\right)
$$

Two Photon:

$$
\begin{gathered}
I_{G L^{2}}(r, z)=\frac{4 \omega_{0}^{4}}{\pi^{2} \omega^{4}(z)} \exp \left(-\frac{4 r^{2}}{\omega^{2}(z)}\right) \\
\omega^{2}(z)=\omega_{0}^{2}\left(1+\left(\frac{z}{z_{R}}\right)^{2}\right) \\
z_{R}=\frac{\pi \omega_{0}^{2}}{\lambda}
\end{gathered}
$$

Single Particle PCH

Have to sum up the poissonian distributions for all possible positions of the particle within the PSF

$$
p^{(1)}(k)=\frac{1}{V_{0}} \int_{V_{0}} P o i(k, \varepsilon \overline{P S F}(\vec{r})) d \vec{r}
$$

- What if I have two particles in the PSF?
- Have to calculate every possible position of the second particle for each possible position of the first!

Contribution from several particles of same brightn Combining Distributions

Combining Distributions

Particle 2

Convolution

- Sum up all combinations of two probability distributions (joint probability distribution)
- Distributions (particles) must be independent

$$
p^{(1+2)}(k)=\sum_{r=0}^{r=k} p^{(1)}(k-r) \cdot p^{(2)}(r)
$$

Contribution from particles of different brightn

More Particles

$$
p^{(n)}(k)=p^{(1)}(k) \otimes p^{(n-1)}(k)=\sum_{r=0}^{r=k} p^{(1)}(k-r) \cdot p^{(n-1)}(r)
$$

How Many Particles Do We Have in the PSF?

$$
P(n, N)=\operatorname{Poi}(n, N)
$$

Particle occupation fluctuates around average, N with a poissonian distribution

Calculate poisson weighted average of n particle distributions

$$
\operatorname{PCH}(k, N)=\sum_{n} p^{(n)}(k) \cdot P(n, N)
$$

Multiple Species

- Species are independent so just convolute!

Recap: Factors that contribute to the final broadening of the PCH

Method

- Sum up Poisson distributions from all possible arrangements and number of fluorophores in excitation volume (PSF)
- Intensity weighted sum of all possible single particle histograms (Poisson functions)
- Convolution to get multiple particle histograms
- Number probability weighted sum of multiple particle histograms
- Convolution to get multi-species histograms

Chen et al., Biophys. J., 1999, 77, 553.

Fitting

$$
\chi^{2}=\frac{\sum_{k}\left(M \frac{P C H_{\text {model }}(k)-P C H_{\text {observed }}(k)}{\sqrt{M \cdot P C H_{\text {observed }}(k) \cdot\left(1-P C H_{\text {observed }}(k)\right)}}\right)^{2}}{k_{\max }-d}
$$

M is number of observations
d is number of fitting parameters

Chen et al., Biophys. J., 1999, 77, 553.

Model Test

$$
\begin{aligned}
& \varepsilon=9,030 \mathrm{cpsm} \\
& \mathrm{~N}=1.28
\end{aligned}
$$

$\varepsilon=91,330 \mathrm{cpsm}$
$N=0.12$

Hypothetical situation: Protein Interactions

- 2 proteins are labeled with a fluorophore
- Proteins are soluble
- How do we assess interactions between these proteins?

Dimer has double the brightness

$$
\mathcal{E}=2 \times \varepsilon_{m o n o m e r}
$$

All three species are present in equilibrium mixture

Typical one photon $\varepsilon_{\text {monomer }}=10,000 \mathrm{cpsm}$

Photon Count Histogram (PCH)

Simulation Solution

$\varepsilon=9,000 \mathrm{cpsm}$

$$
N=1.3
$$

$\varepsilon=16,000 \mathrm{cpsm}$
$\mathrm{N}=0.73$

Global Fitting: Fit Data Sets Simultaneously

What we measure is the number of particles in the PSF. How Do We Get Concentrations?

- N is defined relative to PSF volume $⿷_{P S F}=\int P S F(\vec{r}) d \vec{r}$
- One photon:

$$
V_{3 D G}=w_{0}^{2} z_{0}(\pi / 2)^{3 / 2}
$$

- Two photon:

$$
V_{G L 2}=\frac{\pi w_{0}^{4}}{\lambda}
$$

- Definition is same as for FCS
- Can use FCS to determine w_{0} (and maybe
$\left.w_{0}=0.2 Q\right)_{u m}, z_{0}=1.1 u m, V_{\text {PSF }}=0.091 \mathrm{um}^{3}, C=23 \mathrm{nM}$

How to Improve Accuracy

- Minimize sources of instrument noise
- PSF heterogeneity
- Shot noise
- Maximize particle burst amplitudes

Effect of Brightness

Saturation Effect

Rhodamine 110 on the Zeiss Confocor 3
60 uW laser

Laser power is not an infinite source of brightness!

Concentration Effect

Brightness increases by 100\%

Brightness increases by 10\%

Note: if N is too low, experiment becomes photon limited

Sampling Time Effect

Again, shorter sampling leads to photon limited acquisition
In general sample as long as possible without diffusion averaging

Wu and Mueller, Biophys. J., 2005, 89, 2721.

PSF X,Y, and Z Dimensions Don't Matter

Functional Form DOES Matter

Functional Form Matters for PCH

Point Spread Function Effects

$$
p^{(1)}(k)=\frac{1}{V_{0}} \int_{V_{0}} P o i(k, \varepsilon \overline{\varepsilon P F}(\vec{r})) d \vec{r}
$$

This equation will work for ANY PSF shape.

Alternative Methods

- Fluorescence Cumulant Analysis (FCA)
- Mueller Biophys. J. 2004, 86, 3981.
- Similar to method of moments
- Any distribution can be described by a sum of moments
- Simple algebraic formulas for cumulants
- Fluorescence Intensity Distribution Analysis (FIDA)
- Kask et al. PNAS 1999, 96, 13756.
- Fits PSF in fourier transformed space
- Fits to non-physical parameterized PSF

2D PCH

Calculating the 2D PCH Function

$$
\operatorname{PCH}\left(\varepsilon_{A}, \varepsilon_{B}, N ; k_{A}, k_{B}\right)=\binom{k}{k_{A}}\left(\varepsilon_{A} / \varepsilon\right)^{k_{A}}\left(1-\varepsilon_{A} / \varepsilon\right)^{k-k_{A}} \cdot \operatorname{PCH}(\varepsilon, N ; k)
$$

the binomial distribution:

$$
P(x, k, N)=\binom{N}{k} x^{k}(1-x)^{N-k}
$$

We can find the 2D PCH function from the single channel PCH function!

Chen et al., Biophys. J., 2005, 88, 2177-2192.

Summary

- The photon count histogram can be modeled by integration of component noise sources
- Heterogeneous samples can be resolved through global analysis
- Accuracy is related to magnitude of particle fluctuations relative to instrument fluctuations

